This is an outdated version published on 2023-05-01. Read the most recent version.

Effect of different ashes from biomass olive pomace on the mechanical and fire properties of gypsum-based materials

Authors

  • Begoña Peceño Universidad Católica del Norte, Coquimbo (Chile)
  • Eva M. Pérez-Soriano Department of Materials Science and Engineering and Transport, Escuela Politécnica Superior, Universidad de Sevilla, Seville (Spain) https://orcid.org/0000-0003-0658-8098
  • Jose D. Ríos Department of Mechanical, Energy, and Materials Engineering. Escuela de Ingenierías Industriales, Universi-dad de Extremadura, Avda. de Elvas, Badajoz, (Spain) https://orcid.org/0000-0002-2079-5133
  • Yolanda Luna Department of Chemical and Environmental Engineering, Escuela Superior de Ingenieros, Universidad de Se-villa, Seville, (Spain) https://orcid.org/0000-0002-0117-8316
  • Hector Cifuentes Department of Continuum Mechanics and Structural Analysis, Escuela Técnica Superior de Ingeniería, Universidad de Sevilla, Seville, (Spain) https://orcid.org/0000-0001-6302-418X
  • Carlos Leiva Universidad Católica del Norte, Coquinbo (Chile) https://orcid.org/0000-0001-7967-8102

DOI:

https://doi.org/10.7764/RDLC.22.1.122

Keywords:

biomass ashes, olive pomace, energy valorisation, fire-resistant, mechanical requirements

Abstract

In this study, biomass ashes from different energy valorization processes and storage conditions were used to make fire-resistant materials. Some of the ashes were subjected to a carbonation process. An 80/20 ash/gypsum ratio was used in all compositions. The density and different mechanical properties (compressive and flexural strength, superficial hardness, and dynamic modulus of elasticity), as well as fire resistance properties (insulating capacity and heat absorption capacity), were evaluated at 28 days. The energy valorization had a great influence on the particle size and the Loss On Ignition (LOI) of the fly ash. By increasing both, materials with lower mechanical properties (90%) were produced. Fire resistance was similar for the different ashes tested, but 50% lower than the gypsum material. When the ashes of the materials were carbonated, the material increases compressive strength by 400% compared to ashes without the carbonation process, and the fire resistance was similar to those materials composed exclusively of gypsum, but also a source of CO2 capture is produced.

Downloads

Download data is not yet available.

Author Biographies

Begoña Peceño, Universidad Católica del Norte, Coquimbo (Chile)

School of Environment and Risk Prevention. Faculty of Marine Sciences

Eva M. Pérez-Soriano, Department of Materials Science and Engineering and Transport, Escuela Politécnica Superior, Universidad de Sevilla, Seville (Spain)

Department of Materials Science and Engineering and Transport. Escuela Politécnica Superior

Jose D. Ríos, Department of Mechanical, Energy, and Materials Engineering. Escuela de Ingenierías Industriales, Universi-dad de Extremadura, Avda. de Elvas, Badajoz, (Spain)

Department of Mechanical, Energy, and Materials Engineering. Escuela de Ingenierías Industriales

Yolanda Luna, Department of Chemical and Environmental Engineering, Escuela Superior de Ingenieros, Universidad de Se-villa, Seville, (Spain)

Department of Chemical and Environmental Engineering. Higher Technical School of Engineering

Hector Cifuentes, Department of Continuum Mechanics and Structural Analysis, Escuela Técnica Superior de Ingeniería, Universidad de Sevilla, Seville, (Spain)

Department of Continuum Mechanics and Structural Analysis. Higher Technical School of Engineering

Carlos Leiva, Universidad Católica del Norte, Coquinbo (Chile)

Department of Chemical and Environmental Engineering. Higher Technical School of Engineering

References

Alcazar-Ruiz, A., Garcia-Carpintero, R., Dorado, F., & Sanchez-Silva, L. (2021). Valorization of olive oil industry subproducts: ash and olive pomace fast pyrolysis. Food and Bioproducts Processing, 125, 37-45. doi:10.1016/j.fbp.2020.10.011

Asako, Y., Otaka, T., & Yamaguchi, Y. (2004). Fire resistance characteristics of materials with polymer gels which absorb aqueous solution of calcium chloride. Numerical Heat Transfer, Part A: Applications, 45(1), 49-66. doi:10.1080/1040778049026738

Beh, J.H., Yew, M.K., Yew, M.C., & Saw, L.H. (2021). Characterization and fire protection properties of rubberwood biomass ash formulated intumescent coatings for steel. Journal of Materials Research and Technology, 14, 2096-2106. doi:10.1016/j.jmrt.2021.07.103

CEN EN 1363-1:2021. Fire resistance test. Part 1: General requirements. European Committee for Standardization. Brussels, Belgium.

CEN EN 12859:2012. Gypsum blocks. Definitions, requirements and test methods. European Committee for Standardization. Brussels, Belgium.

CEN EN 13279-1:2009. Gypsum binders and gypsum plasters. Part 1. Definitions and requirements. European Committee for Standardization. Brussels, Belgium.

CEN EN 13279-2:2014. Gypsum binders and gypsum plasters - Part 2: Test methods. European Committee for Standardization. Brussels, Belgium.

Chan, W. H., Mazlee, M. N., Ahmad, Z. A., Ishak, M. A. M., & Shamsul, J. B. (2017). The development of low cost adsorbents from clay and waste mate-rials: a review. Journal of Material Cycles and Waste Management, 19(1), 1-14. doi:10.1007/s10163-015-0396-5

Cheng, T. & Chiu, J. (2003). Fire-Resistant Geopolymer Produced by Granulated Blast Furnace Slag. Minerals Engineering, 16(3); 205-210. doi:10.1016/S0892-6875(03)00008-6

Consejería de Agricultura y Pesca – Junta de Andalucía. (2010). Potencial energético de los subproductos de la industria olivarera en Andalucía. Retrieved from https://www.juntadeandalucia.es/export/drupaljda/Potencial%20energ%C3%A9tico.pdf

De la Casa, J.A. & Castro, E. (2014). Recycling of washed olive pomace ash for fired clay brick manufacturing. Construction and Building Materials, 61, 320-326. doi:10.1016/j.conbuildmat.2014.03.026

Eliche-Quesada, D. & Leite-Costa, J. (2016). Use of bottom ash from olive pomace combustion in the production of eco-friendly fired clay bricks. Waste Management, 48, 323-333. doi:10.1016/j.wasman.2015.11.042

Fernández-Pereira, C., De La Casa, J. A., Gómez-Barea, A., Arroyo, F., Leiva, C., & Luna, Y. (2011). Application of biomass gasification fly ash for brick manufacturing. Fuel, 90(1), 220-232. doi:10.1016/j.fuel.2010.07.057

Galiano, Y. L., Leiva, C., Arenas, C., Arroyo, F., Vilches, L., Fernández Pereira, C., & Villegas, R. (2017). Behaviour of Fly Ash-Based Geopolymer Panels Under Fire. Waste and Biomass Valorization, 8(7), 2485-2494. doi:10.1007/s12649-016-9803-y

Hernández-Olivares, F. & Barluenga, G. (2004). Fire performance of recycled rubber-filled high strength concrete. Cement and Concrete Research, 34(1), 109-117. doi:10.1016/S0008-8846(03)00253-9

Jidrada, P., Sua-iam, G., Chatveera, B., & Makul, N. (2016). Recycling of combined coal-biomass ash from electric power plant waste as a cementitious material: characteristics and improvement. Journal of Material Cycles and Waste Management, 18, 527-540. doi:10.1007/s10163-014-0349-4

Jin, Z. F., Asako, Y., Yamaguchi, Y., & Harada, M. (2000). Fire resistance test for fire protection materials with high water content. International Journal of Heat and Mass Transfer, 43(18), 3407. doi:10.1016/S0017-9310(00)00076-4

Jitianu, M., Bãlãsoiu, M., Marchidan, R., Zaharescu, M., Crisan, D., & Craiu, M. (2000). Thermal behaviour of hydrotalcite-like compounds: study of the resulting oxidic forms. International Journal of Inorganic Materials, 2(2-3); 287-300. doi:10.1016/S1466-6049(00)00019-2

Leiva, C., Vilches, L. F., Vale, J., & Fernández-Pereira, C. (2005). Influence of the type of ash on the fire resistance characteristics of ash-enriched mortars. Fuel, 84(11), 1433-1439. doi:10.1016/j.fuel.2004.08.031

Leiva, C., Gómez-Barea, A., Vilches, L. F., Ollero, P., Vale, J., & Fernández-Pereira, C. (2007). Use of biomass gasification fly ash in lightweight plaster-board. Energy & Fuels, 21(1), 361-367. doi:10.1021/ef060260n

Leiva, C., Vilches, L. F., Vale, J., Olivares, J., & Fernández-Pereira, C. (2008). Effect of carbonaceous matter contents on the fire resistance and mechani-cal properties of coal fly ash enriched mortars. Fuel, 87(13-14); 2977-2982. doi:10.1016/j.fuel.2008.04.020

Leiva, C., García Arenas, C., Vilches, L. F., Vale, J., Gimenez, A., Ballesteros, J. C., & Fernández-Pereira, C. (2010). Use of FGD gypsum in fire resistant panels. Waste Management, 30(6), 1123-1129. doi:10.1016/j.wasman.2010.01.028

Leiva, C., Arenas, C., Alonso-Fariñas, B., Vilches, L. F., Peceño, B., Luna-Galiano, Y., & Rodríguez-Galán, M. (2018). Fire-resistant panels composed only of combustion by-products. Proceedings of Institution of Civil Engineers: Construction Materials, 171(1), 36-44. doi:10.1680/jcoma.16.00018

López, R., Díaz, M. J., González-Pérez, J. A. (2018). Extra CO2 sequestration following reutilization of biomass ash. Science of The Total Environment, 625, 1013-1020. doi:10.1016/j.scitotenv.2017.12.263

Magnago, R. F., de Alcântara Braglia, T., de Aguiar, A. C., Baungarten, P., Büchele Mendonça, B. A., Turatti Silva, H. R., Egert, P., Girotto, E., Cruz Júnior, A., Cremona Parma, G. O. (2021). Recycling glass-polishing sludge and aluminum anodising sludge in polyurethane and cement composites: fire per-formance and mechanical properties. Journal of Material Cycles and Waste Management, 23, 1126-1140. doi:10.1007/s10163-021-01202-x

Moudache, M., Silva, F., Nerín, C., & Zaidi, F. (2021). Olive cake and leaf extracts as valuable sources of antioxidant and antimicrobial compounds: a comparative study. Waste and Biomass Valorization, 12, 1431-1445. doi:10.1007/s12649-020-01080-8

Nguyen, H., Jamali Moghadam, M., & Moayedi, H. (2019). Agricultural wastes preparation, management, and applications in civil engineering: a review. Journal of Material Cycles and Waste Management, 21, 1039-1051. doi:10.1007/s10163-019-00872-y

Nogales, R., Melgar, R., & Benítez, E. (2006). Potential Use of Olive-Waste Ash from Cogeneration Plants as a Soil Amendment. Journal of Environmen-tal Science and Health, Part B, 41(8), 1405-1415. doi:10.1080/03601230600964282

Nogales, R., Delgado, G., Quirantes, M., Romero, M., Romero, E., & Molina-Alcaide, E. (2011). Characterization of Olive Waste Ashes as Fertilizers. In: Insam, H. & Knapp. B. A. (Eds.), Recycling of Biomass Ashes (Vol 1, pp. 57-68). Berlin , Germany: Springer. doi:10.1007/978-3-642-19354-5_5

Ohenoja, K., Rissanen, J., Kinnunen, P., & Illikainen, M. (2020). Direct carbonation of peat-wood fly ash for carbon capture and utilization in construction application. Journal of CO2 Utilization, 40, 101203. doi:10.1016/j.jcou.2020.101203

Pérez-Villarejo, L., Eliche-Quesada, D., Martín-Pascual, J., Martín-Morales, & M., Zamorano, M. (2020). Comparative study of the use of different bio-mass from olive grove in the manufacture of sustainable ceramic lightweight bricks. Construction and Building Materials, 231, 117103. doi:10.1016/j.conbuildmat.2019.117103

Prager, G., Périco, R., Poleto, G., Bolina, F. L., & Tutikian, B. F. (2020). Experimental analysis of fire resistance of mortar coatings on structural masonry walls. Revista de la Construcción, 19(3), 311–320. doi:10.7764/rdlc.19.3.311-320

Rashad, A. M. (2020). An investigation on alkali-activated slag pastes containing quartz powder subjected to elevated temperatures. Revista de la Cons-trucción, 19(1), 42–51. doi:10.7764/RDLC.19.1.42-51

Río Merino, M., Guijarro Rodríguez, J., Fernández Martínez, F., & Santa Cruz Astorqui, J. (2020). Viability of using olive stones as lightweight aggregate in construction mortars. Revista de la Construcción, 16(3), 431–438. doi:10.7764/RDLC.16.3.431

Ríos, J. D., Arenas, C., Cifuentes, H., Vilches, L. F., & Leiva, C. (2020). Development of a paste for passive fire protection mainly composed of granulated blast furnace slag. Environmental Progress & Sustainable Energy, 39(3), 13382. doi:10.1002/ep.13382

Sharma, G. & Singh, K. (2019). Recycling and utilization of agro-food waste ashes: syntheses of the glasses for wide-band gap semiconductor applica-tions. Journal of Material Cycles and Waste Management, 21, 1-9. doi:10.1007/s10163-019-00839-z

Stachowicz, M., Parafiniuk, J., Wilson, C., Coles, S. & Woźniak, K. (2015). Applications of Hirshfeld surfaces to mineralogy: An example of alumohydro-calcite, and the classification of the dundasite group minerals. American Mineralogist, 100(1), 110-119. doi:10.2138/am-2015-4939

Suescum-Morales, D., Kalinowska-Wichrowska, K., Fernández, J. M., & Jiménez, J. R. (2021). Accelerated carbonation of fresh cement-based products containing recycled masonry aggregates for CO2 sequestration. Journal of CO2 Utilization, 46, 101461. doi:10.1016/j.jcou.2021.101461

Supancic, K., Obernberger, I., Kienzl, N., & Arich, A. (2014). Conversion and leaching characteristics of biomass ashes during outdoor storage – Results of laboratory tests. Biomass and Bioenergy, 61, 211-226. doi:10.1016/j.biombioe.2013.12.014

Valta, K., Aggeli, E., Papadaskalopoulou, C., Panaretou, V., Sotiropoulos, A., Malamis, D., Moustakas, K., & Haralambous, K. J. (2015). Adding Value to Olive Oil Production Through Waste and Wastewater Treatment and Valorisation: The Case of Greece. Waste and Biomass Valorization, 6, 913-925. doi:10.1007/s12649-015-9373-4

Vassilev, S. V. & Vassileva, C. G. (2020). Extra CO2 capture and storage by carbonation of biomass ashes. Energy Conversion and Management, 204, 112331. doi:10.1016/j.enconman.2019.112331

Vilches, L. F., Leiva, C., Olivares, J., Vale, J., & Fernández, C. (2005). Coal fly ash-containing sprayed mortar for passive fire protection of steel sections. Materiales de Construcción, 55(279), 25-37. doi:10.3989/mc.2005.v55.i279.196

Vilches, L. F., Leiva, C., Vale, J., & Fernández-Pereira, C. (2005). Insulating capacity of fly ash pastes used for passive protection against fire. Cement and Concrete Composites, 27(7-8); 776-781. doi:10.1016/j.cemconcomp.2005.03.001

Wu, Y., Fan, S., He, B., Li, C., & Zhou, H. (2021). Experimental study and numerical simulation analysis of the fire resistance of high-strength steel col-umns with rectangular sections under axial compression. Fire Safety Journal, 121, 103266. doi:10.1016/j.firesaf.2020.103266

Downloads

Published

2023-05-01

Versions

How to Cite

Peceño, B., Pérez-Soriano, E. M., Ríos, J. D., Luna, Y., Cifuentes, H., & Leiva, C. (2023). Effect of different ashes from biomass olive pomace on the mechanical and fire properties of gypsum-based materials. Revista De La Construcción. Journal of Construction, 22(1), 122–134. https://doi.org/10.7764/RDLC.22.1.122